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Introduction.

Evolutionary methods are exceedingly popular with practitioners of many

fields; more so tha.n perhaps any optimization tool in existence. Historically

Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves

1997). However, in the last ten years Evolutionary Strategies (ESs) and Evo-

lutionary Programs (EPS) have gained a significant foothold (Glover 1998).

One partial explanation for this shift is the interest in using GAs to solve

continuous optimization problems. The typical GA relies upon a cumber-

some binary representation of the design variables. An ES or EP, however,

works directly with the real-valued design variables. For detailed references

on evolutionary methods in general and ES or EP in specific see Back (1996)

and Dasgupta and Michalesicz (1997). We call our evolutionary.algorithm

BCB (bell curve based) since it is based upon two normal distributions.

BCB for continuous optimization, first presented in Sobieszczanski-Sobieski

et al. (1998), is similar in spirit to ESs and EPs but has fewer parameters to

adjust. A new generation in BCB is selected exactly the same as a (# +,_)-ES

with A = it. That is, the best # individuals out of # parents plus A children

are selected for the next generation. Thus fit individuals may continue from

one generation to the next. The recombination and mutation mechanisms

are illustrated in Figl_re 1. Consider the line through two n-dimensional par-
ent vectors fil and P2 selected for mating. First, determine the weighted

mean/l_ of these two vectors where the weights are given by the fitness (KS

value) of each parent. Next, sample from a normal distribution N(0,a,,,).

The resulting point/_ = 217I+ I/_2- igll. N(O,o,,,)is the child, prior to nmta-

tion. Note that/_ is not restricted to lie on the line segment P_ P2. Mutation

ensues by first generating a radius r for an n - 1 dimensional hypersphere.

The radius is a realization from a N(0, a_). Typically (c,,. >> or,,,). Finally

the mutated chiht C is selected by sampling unifi)rmly on the surface of the



n - 1 dimensional hypersphere. Hence, there are two parameters c,,. and c,,,,

in addition to the traditional parameters of population size and munl)er of

generations.
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Figure 1. BCB Geometrical Construct in 3D Space

Summary of Research.

The research effort over the grant period has resulted in two manuscripts--

Kincaid et al. (2001a) and Kincaid et al. (2001b). In Kincaid et al. (2001a)

a new version of BCB to solve purely discrete optimization problems is de-

scribed and its performance is tested against a tabu search code for an ac-

tuator placement problem. Next, the performance of a combined version of

discrete and continuous BCB is tested on 2-dimensional shape problems a.nd

on a minimum weight hub design problem. In the latter case the discrete

portion is the choice of the underlying beam shape (I, triangular, circular,

rectangular, or U).



In Kincaid et al. (20011)) we presented an extension of BCB to apl)li-

cations that encompass a mix of continuous and quasi-discrete, as well as

truly-discrete decision va.riables. The extension combines a definition of the

distance between the parent designs in the space that con:prises discrete and

continuous variables with application to optimization of statically indeter-

minate structures in which the order of design variables, e.g. the type of

the cross-section, does matter. As expected, the algorithm that accommo-

dates the order information produces better results. In addition, we provide a

comparison allowing sampling fi'om the tails of a discrete normal distribution

versus a standard mutation scheme. Adding sampling from the tails brings

the continuous and discrete versions of BCB into agreement. Moreover, given

the same computing resources, we show that sampling fi'om the tails of the

discrete normal leads to higher quality solutions than the standard genetic

algorithm mutation approach.
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